Physcial Metallurgy Syllabus
Physical Metallurgy
Complete Guide for GATE Metallurgy (MT) - Section 5 (TestUrSelf)
Table of Contents
5.1 Chemical Bonding & Crystal Structure
Types of Chemical Bonding
| Bond Type | Energy Range (kJ/mol) | Examples | Characteristics |
|---|---|---|---|
| Ionic | 600-1500 | NaCl, MgO | Electron transfer, high melting point |
| Covalent | 150-1100 | Diamond, SiO2 | Electron sharing, directional |
| Metallic | 100-350 | Cu, Fe, Al | Electron sea, ductile |
| Secondary | 1-50 | Polymers, H2O | Van der Waals, hydrogen bonds |
Crystal Structures of Solids
NaCl (Rock Salt)
BCC (Fe, W)
FCC (Cu, Al)
HCP (Mg, Zn)
Key Parameters
| Structure | Coordination # | APF | Examples |
|---|---|---|---|
| BCC | 8 | 0.68 | Fe(α), W, Mo |
| FCC | 12 | 0.74 | Cu, Al, Ni, Fe(γ) |
| HCP | 12 | 0.74 | Mg, Zn, Ti(α) |
5.2 Characterization Techniques
X-ray Diffraction
Where:
- n = order of reflection (1, 2, 3...)
- λ = wavelength of X-rays (Cu Kα = 1.54 Å)
- d = interplanar spacing
- θ = Bragg angle
Interplanar Spacing
For cubic crystals:
Example: FCC Pattern
Allowed reflections: h,k,l all odd or all even
First 5 peaks: (111), (200), (220), (311), (222)
Optical & Electron Microscopy
Optical Metallography
- Resolution limit: ~0.2 μm
- Magnification: 50-1000×
- Sample preparation: Cutting, mounting, grinding, polishing, etching
SEM Imaging
- Resolution: 1-10 nm
- Depth of field: 100× better than optical
- Signals: Secondary electrons (topography), Backscattered electrons (composition)
Comparison
| Feature | Optical | SEM |
|---|---|---|
| Resolution | ~0.2 μm | 1-10 nm |
| Depth of Field | Low | High |
| Sample Prep | Polished+etched | Conductive coating |
5.3 Crystal Imperfections
Point Defects
Types
- Vacancies: Missing atoms
- Interstitials: Extra atoms in voids
- Substitutional: Impurity atoms
Concentration
Where Qv ≈ 1 eV for many metals
Example: Cu Vacancies
At 1000K (Qv = 1 eV):
Line Defects (Dislocations)
Types
- Edge: Extra half-plane of atoms
- Screw: Spiral ramp of atoms
- Mixed: Combination of edge and screw
Burgers Vector (b)
Magnitude and direction of lattice distortion
Dislocation Density
Annealed metals: 106-108 cm/cm3
Heavily deformed: 1011-1012 cm/cm3
Interfaces
| Interface Type | Misfit | Energy (J/m2) | Example |
|---|---|---|---|
| Coherent | <5% | 0.05-0.5 | GP zones |
| Semi-coherent | 5-25% | 0.5-1.0 | θ' in Al-Cu |
| Incoherent | >25% | 1.0-2.0 | θ in Al-Cu |
5.4 Diffusion in Solids
Diffusion Equations
Fick's First Law
Fick's Second Law
Solutions
Error function solution for constant surface concentration:
Types of Diffusion
Kirkendall Effect
Different diffusion rates create voids (e.g., Cu-Ni diffusion couple)
Uphill Diffusion
Diffusion against concentration gradient due to chemical potential gradient
Diffusion Mechanisms
| Mechanism | Activation Energy | Example |
|---|---|---|
| Interstitial | Low (0.1-1 eV) | C in Fe |
| Vacancy | High (1-5 eV) | Self-diffusion |
| Grain Boundary | Very Low (~0.5Qv) | Fast diffusion paths |
5.5 Phase Transformations
Solidification
Nucleation
Where γ = interfacial energy, ΔGv = volume free energy change
Growth
Cast Structures
- Chill zone: Fine equiaxed grains
- Columnar zone: Dendritic growth
- Equiaxed zone: Central coarse grains
Solid State Transformations
| Transformation | Mechanism | Example |
|---|---|---|
| Precipitation | Nucleation & growth | Al-Cu (θ") |
| Spinoidal | Continuous decomposition | Cu-Ni-Fe |
| Eutectoid | Cooperative growth | Fe-C (pearlite) |
| Martensitic | Diffusionless shear | Fe-C, Ti alloys |
Gibbs-Thomson Effect
Where Cr = solubility of particle with radius r
5.6 Heat Treatment
Heat Treatment of Steels
TTT Diagrams
<div class="diagram" style="background: url('data:image/svg+xml;utf8,<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"500\" height=\"300\" viewBox=\"0 0 500 300\"><path d=\"M50,250 L150,150 L200,100 L300,50 L400,80\" fill=\"none\" stroke=\"%235e35b1\" stroke-width=\"2\"/><path d=\"M50,250 L150,200 L200,180 L250,200 L300,220 L350,240\" fill=\"none\" stroke=\"%23ff7043\" stroke-width=\"2\"/><path d=\"M50,250 L100,200 L150,150 L200,120 L250,150 L300,200\" fill=\"none\" stroke=\"%2326a69a\" stroke-width=\"2\"/><text x=\"100\" y=\"270\" font-size=\"12\">Time (log scale)</text><text x=\"20\" y=\"150\" font-size=\"12\">Temperature (°C)</text><text x=\"200\" y=\"30\" fill=\"%235e35b1\">Martensite</text><text x=\"300\" y=\"270\" fill=\"%23ff7043\">Pearlite</text><text x=\"200\" y=\"180\" fill=\"%2326a69a\">Bainite</text></svg>') no-repeat center; background-size: contain; height: 300px;">CCT Diagrams
Continuous Cooling Transformation - shows transformation products at different cooling rates
Surface Hardening
- Carburizing: Add carbon at surface (900-950°C)
- Nitriding: Add nitrogen at surface (500-550°C)
- Induction hardening: Localized heating + quenching
Recovery, Recrystallization & Grain Growth
Where tR = recrystallization time, QR ≈ 0.3-0.5Qv
Where n ≈ 2 for normal grain growth
5.7 Material Properties
Electronic Properties
| Property | Metals | Semiconductors | Insulators |
|---|---|---|---|
| Resistivity (Ω·m) | 10-8-10-6 | 10-5-106 | 1010-1020 |
| Band Gap (eV) | 0 | 0.1-3.0 | >3.0 |
Magnetic Properties
| Type | χ (Susceptibility) | Examples |
|---|---|---|
| Diamagnetic | -10-5 | Cu, Au, Si |
| Paramagnetic | 10-5-10-3 | Al, Ti, Na |
| Ferromagnetic | >103 | Fe, Co, Ni |
5.8 Corrosion
Basic Forms of Corrosion
Galvanic
Uniform
Pitting
Crevice
Stress
Prevention Methods
- Material selection (noble metals, stainless steels)
- Cathodic protection (sacrificial anodes, impressed current)
- Coatings (paint, plating, anodizing)
- Corrosion inhibitors (chromates, phosphates)
© Copyright 2023 TestUrSelf. All Rights Reserved.