Study | Crack | Inspire

Building, TestUrSelf | IISc Bengaluru | BOD, Kartavya | Materials Engineering

Engineering Mathematics Syllabus | Study Crack Inspire

Engineering Mathematics Syllabus

April 02, 2025

GATE MT - Engineering Mathematics
Σ

Engineering Mathematics

Complete Guide for GATE Metallurgy (MT) - Section 1 (TestUrSelf)

1.1 Linear Algebra

Matrices & Determinants

A

Matrix Operations

|A|

Determinants

A⁻¹

Inverse Matrix

Matrix Example

a₁₁
a₁₂
a₁₃
a₂₁
a₂₂
a₂₃
a₃₁
a₃₂
a₃₃
det(A) = a₁₁(a₂₂a₃₃ - a₂₃a₃₂) - a₁₂(a₂₁a₃₃ - a₂₃a₃₁) + a₁₃(a₂₁a₃₂ - a₂₂a₃₁)

Eigenvalues & Eigenvectors

Ax = λx

Where:

  • A = square matrix
  • λ = eigenvalue (scalar)
  • x = eigenvector (non-zero)
Example: Find Eigenvalues

For matrix A = [[2, 1], [1, 2]]:

det(A - λI) = (2-λ)² - 1 = 0 → λ = 1, 3

1.2 Calculus

Limits & Continuity

limx→a f(x) = L if ∀ε>0, ∃δ>0 : 0 < |x-a| < δ ⇒ |f(x)-L| < ε

Key Concepts

  • Continuity: limx→a f(x) = f(a)
  • Differentiability: f'(a) exists
  • L'Hôpital's Rule for 0/0 or ∞/∞ forms

Maxima & Minima

Critical points: f'(x) = 0 or undefined
Second derivative test: f''(x) > 0 ⇒ local min, f''(x) < 0 ⇒ local max

1.3 Vector Calculus

Gradient, Divergence & Curl

∇f

Gradient

∇·F

Divergence

∇×F

Curl

∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)
∇·F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z
∇×F = (∂Fz/∂y - ∂Fy/∂z, ∂Fx/∂z - ∂Fz/∂x, ∂Fy/∂x - ∂Fx/∂y)

Integral Theorems

Theorem Equation Application
Green's C (Pdx + Qdy) = ∬D (∂Q/∂x - ∂P/∂y) dA 2D regions
Stokes' C F·dr = ∬S (∇×F)·dS 3D surfaces
Gauss' S F·dS = ∭V (∇·F) dV 3D volumes

1.4 Differential Equations

Ordinary Differential Equations

First Order ODEs

dy/dx + P(x)y = Q(x) (Linear)
M(x,y)dx + N(x,y)dy = 0 (Exact)

Second Order Linear

ay'' + by' + cy = 0 → Characteristic equation: ar² + br + c = 0

Partial Differential Equations

Equation Form Solution Method
Laplace ∇²u = 0 Separation of variables
Heat ∂u/∂t = α∇²u Fourier series
Wave ∂²u/∂t² = c²∇²u d'Alembert's solution

1.5 Probability & Statistics

Probability Basics

P(A∪B) = P(A) + P(B) - P(A∩B)
P(A|B) = P(A∩B)/P(B) (Conditional Probability)
μ

Mean

σ

Std Dev

Probability Distributions

Distribution PMF/PDF Parameters
Binomial C(n,k)pk(1-p)n-k n, p
Poisson ke)/k! λ
Normal (1/σ√2π)e-(x-μ)²/2σ² μ, σ

1.6 Numerical Methods

Root Finding Methods

B

Bisection

N

Newton-Raphson

S

Secant

Newton-Raphson: xn+1 = xn - f(xn)/f'(xn)

Numerical Integration

Trapezoidal: ∫ab f(x)dx ≈ (h/2)[f(x₀) + 2Σf(xᵢ) + f(xₙ)]
Simpson's: ∫ab f(x)dx ≈ (h/3)[f(x₀) + 4Σf(xodd) + 2Σf(xeven) + f(xₙ)]