Engineering Mathematics Syllabus
∫
∇
Σ
∂
Engineering Mathematics
Complete Guide for GATE Metallurgy (MT) - Section 1 (TestUrSelf)
Table of Contents
1.1 Linear Algebra
Matrices & Determinants
Matrix Operations
Determinants
Inverse Matrix
Matrix Example
a₁₁
a₁₂
a₁₃
a₂₁
a₂₂
a₂₃
a₃₁
a₃₂
a₃₃
det(A) = a₁₁(a₂₂a₃₃ - a₂₃a₃₂) - a₁₂(a₂₁a₃₃ - a₂₃a₃₁) + a₁₃(a₂₁a₃₂ - a₂₂a₃₁)
Eigenvalues & Eigenvectors
Ax = λx
Where:
- A = square matrix
- λ = eigenvalue (scalar)
- x = eigenvector (non-zero)
Example: Find Eigenvalues
For matrix A = [[2, 1], [1, 2]]:
det(A - λI) = (2-λ)² - 1 = 0 → λ = 1, 3
1.2 Calculus
Limits & Continuity
limx→a f(x) = L if ∀ε>0, ∃δ>0 : 0 < |x-a| < δ ⇒ |f(x)-L| < ε
Key Concepts
- Continuity: limx→a f(x) = f(a)
- Differentiability: f'(a) exists
- L'Hôpital's Rule for 0/0 or ∞/∞ forms
Maxima & Minima
Critical points: f'(x) = 0 or undefined
Second derivative test: f''(x) > 0 ⇒ local min, f''(x) < 0 ⇒ local max
1.3 Vector Calculus
Gradient, Divergence & Curl
Gradient
Divergence
Curl
∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)
∇·F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z
∇×F = (∂Fz/∂y - ∂Fy/∂z, ∂Fx/∂z - ∂Fz/∂x, ∂Fy/∂x - ∂Fx/∂y)
Integral Theorems
| Theorem | Equation | Application |
|---|---|---|
| Green's | ∮C (Pdx + Qdy) = ∬D (∂Q/∂x - ∂P/∂y) dA | 2D regions |
| Stokes' | ∮C F·dr = ∬S (∇×F)·dS | 3D surfaces |
| Gauss' | ∯S F·dS = ∭V (∇·F) dV | 3D volumes |
1.4 Differential Equations
Ordinary Differential Equations
First Order ODEs
dy/dx + P(x)y = Q(x) (Linear)
M(x,y)dx + N(x,y)dy = 0 (Exact)
Second Order Linear
ay'' + by' + cy = 0 → Characteristic equation: ar² + br + c = 0
Partial Differential Equations
| Equation | Form | Solution Method |
|---|---|---|
| Laplace | ∇²u = 0 | Separation of variables |
| Heat | ∂u/∂t = α∇²u | Fourier series |
| Wave | ∂²u/∂t² = c²∇²u | d'Alembert's solution |
1.5 Probability & Statistics
Probability Basics
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A|B) = P(A∩B)/P(B) (Conditional Probability)
Mean
Std Dev
Probability Distributions
| Distribution | PMF/PDF | Parameters |
|---|---|---|
| Binomial | C(n,k)pk(1-p)n-k | n, p |
| Poisson | (λke-λ)/k! | λ |
| Normal | (1/σ√2π)e-(x-μ)²/2σ² | μ, σ |
1.6 Numerical Methods
Root Finding Methods
Bisection
Newton-Raphson
Secant
Newton-Raphson: xn+1 = xn - f(xn)/f'(xn)
Numerical Integration
Trapezoidal: ∫ab f(x)dx ≈ (h/2)[f(x₀) + 2Σf(xᵢ) + f(xₙ)]
Simpson's: ∫ab f(x)dx ≈ (h/3)[f(x₀) + 4Σf(xodd) + 2Σf(xeven) + f(xₙ)]
© Copyright 2023 TestUrSelf. All Rights Reserved.